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ABSTRACT 
The current paper shows that all the planar linkages can be 
constructed from given components called, Assur Graphs, 
which can be ordered in a table with infinite numbers of 
rows and columns. In the paper we term this order the 
canonical form of the planar linkages. This canonical form 
is proved to be an ordered hierarchy of several levels, 
enabling systematic generation of all its members. The 
work has originated from the concept of Assur groups, 
long known in the field of kinematics, and used to 
decompose any linkage into basic kinematical atoms. In 
this paper we introduce a systematic procedure for 
generating all Assur groups thus finding all the topologies 
of plane linkages. The work in 2D is based upon known 
but new mathematical theorems which prove it to be 
complete and sound. The paper also indicates how this 
work can be extended into 3D linkages. 
The mathematical foundation of this work contains several 
new theorems that have been published by the rigidity 
theory community during the past six years.  

1.   INTRODUCTION 
This paper introduces a systematic methodology enabling 
derivation of the topologies of planar linkages. Although 
this generic perspective yields all planar linkage 
topologies, it is done using only two operations. 
The idea behind the paper is based on the works of Assur 
(Assur 1952), but in a way different than he anticipated. 
The idea behind Assur’s work was to decompose every 
linkage into Assur groups, based on the following 
theorem: for every linkage there is a unique 
decomposition into Assur groups. He used this theorem 
for analysis. The work, reported in the paper, is used for 
topological synthesis. The work here reports, for the first 
time in the engineering community, a method to construct 

all the Assur groups, by only two operations based on 
theorems from rigidity theory. Once we have all the Assur 
groups, different combinations between the Assur groups 
yield diverse topologies of linkages.  
Thus, we now have the map of all the topologies of planar 
linkages. 
The mathematical proof underlying this work is to be 
found in two papers published in the rigidity theory 
community. The first paper was published in 2003 by 
Berg and Jordan who proved that there is a set of graphs 
with a unique property, that  possess a self-stress on all the 
edges, and all these graphs can be derived using only two 
operations (Berg and Jordan, 2003). They called these 
graphs – generic cycles. In 2009, a paper will be published 
in the European Journal of Combinatorics (Servatius et al., 
2009a) in which one of the results shown, that for all the 
Assur groups, when their ground joints are identified, the 
resulting graph is a graph of the kind reported in 2003, 
known as generic cycles.  
These two works are the mathematical foundation 
underlying this paper. The Assur groups were 
reformulated in terms of graphs, and using two operations 
similar to those reported in 2003 enable derivation of all 
the Assur groups. 
Since the paper deals with engineering issues using 
material from rigidity theory, new definitions are 
introduced and Assur groups are treated and defined as 
Assur graphs. 
The work ends with the possible extension into spatial 
linkage topologies. It seems that infinite topologies of 
spatial linkages with spherical joints can be derived using 
the methodology appearing in the paper, but, in contrast to 
2D, it is not mathematically proved that all the topologies 
can be derived. Explanations appear in the paper. 
Since such work, that is based on the theorems from 
rigidity theory, to the knowledge of the author, has not yet 
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been published, and the paper relies only on the works of 
Assur and those published in the rigidity theory 
community, a comprehensive literature survey is not 
given. However, it is important to notice that many 
important works have been done in the mechanical 
engineering community related to syntheses and finding 
all the different topologies of mechanisms, including gear 
trains. The reader is referred to known works, such as:  
(Buchsbaum and Freudenstein, 1970), (Crossley, 1965), 
(Freudenstein and Dobrjanskys, 1965), (Dobrjanskys and 
Freudenstein, 1967) and more. One of the important books 
in this field, written by (Tsai, 2001) summarizes these 
works and introduces a systematic combinatorial approach 
for enumerating the kinematic structures of mechanisms.  
 

2.  OVERVIEW OF THE ASSUR GRAPH CONCEPT 
Assur groups, occasionally referred as Assur Structures, 
are widely used in the kinematical community, 
particularly among Russian scientists. Leonid Assur 
(Assur, 1952) developed these basic structures in order to 
make it possible to decompose any linkage into 
components of zero mobility, and for each one, to develop 
special methods for analysis of locations, velocities, 
accelerations and other physical properties.  
The concept has been reformulated for the first time in 
rigidity theory terminology in (Servatius et al., 2009a,b), 
where it was defined as a rigid graph, for which deletion 
of any vertex results in a non-rigid graph. Accordingly, it 
has been shown that an Assur Graph is a basic entity 
applicable to treatment not only of kinematical systems, 
but also static systems . 
The current work employs Assur graphs as the central 
building block of the canonical form hierarchy. Since the 
paper deals only with the topology of planar linkages and 
all the mathematical foundation of this paper is graph 
theory, and the terminology from graph theory appearing 
in the paper can be found in any basic textbooks on the 
subject, such as (Swamy and Thulasiraman,  1981). For 
example, joints are referred to as vertices, links as edges 
and structures as graphs. Moreover, to avoid other 
terminologies used in the rigidity theory community and 
not in mechanical engineering the definitions appearing in 
the paper are slightly modified by giving them more 
physical  than combinatorial meaning.  
 
To clarify the terminology used in the paper let us define 
the structure depicted in Fig. 1 in both terminologies. In 
the terminology of engineering this is a determinate truss 
with four rods/bars, two joints – A and B, three pinned 
joints connecting rods 1,2 and 4 to the ground, while each 
rod has its specific geometry (length, inclination angle, 
etc.). Therefore, in engineering terminology there is a 
difference between the two determinate trusses in Fig 1. 
In the terminology of rigidity theory the graph in Fig 1a is 

a rigid graph with four edges, two inner vertices, three 
ground vertices, three ground edges – 1,2 and 4 and there 
is no notion of geometry of the elements. Thus, from the 
rigidity theory point of view there is no difference 
between the two graphs in Figure 1. 
 
 
 
 
 
 
 
 
 

Figure 1.  Two configurations with the same 
topology of a determinate truss (rigid graphs). 

 
Now, we shall define Assur graphs and outline what 
distinguishes them from other rigid graphs. 
 
Assur Graph – is a minimally rigid graph with 
e(G)=2*v(G) where e(G) and v(G) stand for the number of 
edges and inner vertices of graph G, respectively. The 
main property of the graph is that removal of any vertex 
with its incident edges makes the graph non-rigid.  
Figure 2a depicts such an Assur Graph, while the graph in 
Figure 2b is not an Assur Graph since removing vertex A 
with its two incident edges, 3 and 4, results in a rigid 
graph – the dyad with the two edges  1 and 2. 
 

 

 
 

Figure 2.  Different types of graphs in 2D 
a) Assur Graph.  b) Rigid graph that is not an Assur 

graph. 
 

In each Assur Graph there are two types of vertices: 
ground, called also pinned vertices, and inner vertices. 
For example, in triad type Assur Graph there are three 
inner and ground vertices while in the dyad type  Assur 
graph there are two ground vertices and one inner vertex.  
The composition rule for constructing a determinate truss 
from its components (Assur Graphs) is done as follows. 
Let G1 and G2 be two Assur Graphs. G1 is defined to be 
preceding G2 if at least one ground vertex of G1 is 
connected to an inner vertex of G2.  
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The decomposition process can be presented by a directed 
graph in which an edge e=<u,v> indicates that the Assur 
Graph corresponding to vertex u is preceding another 
Assur Graph, presented by vertex v.  This type of graph is 
termed in the paper – decomposition graph.  
For example in Figure 3.b the graph presents the order in 
which the determinate truss in Figure 3.a can be 
decomposed. We start with the initial vertex - a vertex to 
which no edge incident. In this example the initial vertex  
'F' corresponds to the dyad with the inner vertex 'F' and the 
two edges 'FG' and 'FJ'.  Once this dyad is removed it is 
possible to remove, independently the dyads G or J, and so 
forth.  
 

 
 
Figure  3  – Example of decomposition a determinate truss 

into Assur Graphs. 
a) The determinate truss. b) The decomposition graph. 

 
 
From the above it follows that once we have all the Assur 
Graphs it is possible to construct all different determinate 
trusses by composing different Assur Graphs, each time in 
a different order.  
The transformation from determinate trusses into planar 
linkages is easy and is done by just augmenting a driving 
link, each time to a different ground vertex.  
In Figure 4 we can see the three  planar linkages in which 
the driving link is augmented each time to a different 
ground vertex. 

 
Figure 4. -   Transformation of a determinate truss into 

planar linkages. 
 
Now, that we know the definition of Assur Graphs, we can 
show how they are used in analysis of mechanisms. The 
idea of Assur, mathematically proven, is that every 
kinematical system has a unique decomposition into Assur 
Graphs. To clarify the decomposition we use a structural 
scheme (Figure 5) in which the driving link is deleted and 
replaced by a ground joint and each joint connects only 
two links. In the current example, link 1 is deleted and 
joint A is grounded. Then, the system is decomposed into 
three Assur Graphs, a tetrad, triad and a dyad. The order 
of the decomposition is important. If an inner joint of an 
Assur Graph, G1 becomes a ground vertex in Assur Graph 
G2, then G1 should precede G2. 
The unique order of decomposition as appears in Figure 5  
is: First analyze the tetrad{2,3,4,5}, and then analyze the  
Triad {6,7,8,11} or the dyad {9,10}, independently. 
 

2.1    THE ATOMIC ASSUR GRAPH 
For each dimension there corresponds a so-called atomic 
Assur Graph, which is the basis for the generation of the 
fundamental Assur Graphs, which in their turn, as will be 
explained in the next section, are the basis for the 
development of all Assur graphs. The atomic Assur Graph 
in 2D is the dyad.  
Summing up, in this section it will be shown how all 
Assur Graphs are derived from the dyad by only two 
operations. 
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Figure  5.  Example for decomposition of a linkage 

into Assur Graphs. 
a) The linkage. b) The structural scheme. c) The first 
Assur Graph, the tetrad, in the decomposition order. 
d) The two Assur Graphs, dyad and triad, which can 

be decomposed simultaneously. 
 
 
 
 
  
2.2    THE DERIVATION OF THE FUNDAMENTAL 
ASSUR GRAPHS FROM THE ATOMIC          
ASSUR GRAPHS 
Each fundamental Assur Graph, is a representative of an 
infinite number of Assur Graphs and subsequently of an 
infinite number of determinate trusses and linkages. Any 
feasible fundamental Assur Graph can be obtained through 
an application of a sequence of operations, termed – 
fundamental extensions, starting from the atomic Assur 
Graph of the corresponding dimension, as is described in 
detail in the following section. It is to be emphasized that 
these operations are invariant, i.e., the special properties of 
Assur graphs that exist at the singular positions that are 
reported and proved in  (Servatius et al., 2009a), remain in 
the extension operations.  
 
2.3   THE FUNDAMENTAL EXTENSION  
OPERATION IN 2D 
The main property of the fundamental extension 
operation, transfers fundamental Assur Graphs into 
extended fundamental Assur Graphs, which contain an 
additional basic triangle.   

The fundamental extension is applied to the ground edges 
of the fundamental Assur Graphs, namely, the edges 
incident to the ground vertices.  
The fundamental extension is done in three stages: first, 
one ground edge is removed; then a basic triangle is added 
with one vertex coinciding with a non-ground vertex of 
the removed edge; then the remaining two free vertices of 
the basic triangle, are both connected to the ground 
through  one ground edge. 
In Figure 6 we can see the process of deriving the triad 
from the dyad by replacing one of its ground edges (in the 
dyad both edges are ground edges), designated by the bold 
line, yielding a triangle and an additional two ground 
edges. The following fundamental Assur graph is derived 
by replacing the ground edge whose end vertex is c 
resulting in the new fundamental Assur graph appearing in 
Figure 6c. 
 

 
 

Figure  6.  Example of applying the fundamental 
extension yielding fundamental Assur graphs. 

The dyad. b) The triad. c) The double triad. 
 

 
 
3.   THE CANONICAL FORM OF THE ASSUR  
       GRAPHS 
In the previous section we have introduced the canonical 
form of the fundamental Assur Graphs, being derived 
from the atomic Assur Graph, the dyad, through repetition 
of the single operation of fundamental extension. In this 
section, it will be shown that each fundamental Assur 
Graph is the representative of an infinite class of Assur 
Graphs, all derived through one operation, called the 1- 
extension operation, applied sequentially to the 
corresponding fundamental Assur Graph. In set theory 
terminology, there are an infinite number of classes of 
Assur Graphs, each class of which is defined by a 
representative graph – the corresponding fundamental 
Assur Graph. The following section explains how all the 
Assur Graphs of the class are obtained by applying the 1-
extension to the representative Assur Graph.  The table 
appearing in Figure 7 provides a general perspective on 
the canonical forms of all the Assur Graphs, as infinite 
classes (columns). 
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5

 
Figure  7.  General perspective on the class 

hierarchy of the Assur Graphs 
 

3.1    THE 1-EXTENSION OPERATION AND ITS 
APPLICATION RULE 

In the previous section it was mentioned that each 
fundamental Assur Graph defines a class of an infinite 
number of Assur Graphs, all derived through a single 
operation called the 1-extension.   
 
Definition: 1-extension. Choose an edge xy. Add an 
additional vertex z to the graph.  Replace the edge xy by 
two edges zx, zy and an additional edge connecting vertex 
z with any other vertex of the graph. 
Figure   8 schematically depicts the application of the 1-
extension. 
 
 
 
 
 
 
 
 

 
Figure  8. The 1-extension operation applied on an 

edge. 
 

The special case of the 1-extension in two dimensions is 
widely used and reported in the literature (Berg and 
Jordan, 2003). This operation is invariant, i.e., the special 
properties of Assur graphs at their singular positions 
remain in the extension operation.  
 
3.2    OBTAINING THE CANONICAL MAP OF  
            ASSUR GRAPHS IN 2D 
The canonical form of Assur Graphs consists of 
fundamental Assur Graphs that are the representatives of 

an infinite number of Assur Graphs, such that each Assur 
Graph belongs to one and only one class.  The first 
column, whose representative Assur Graph is the dyad, is 
different from other columns (as is shown in Table 1), 
since there are no elements in its class except for the dyad 
itself. 

4  CHARACTERISATION AND IDENTIFICATION  
       OF FUNDAMENTAL ASSUR GRAPHS 
It is possible to assign an ID to each fundamental Assur 
Graph that can be used to identify it and also from which 
it is also possible to construct it. All the fundamental 
Assur Graphs can be sorted according to the lexicographic 
order, using the following rule: 

1. Find the longest chain in the fundamental Assur 
Graph, which will define the number representing 
the main chain. The ordering in the main chain is 
defined so that the number obtained will be the 
largest in the lexicographic order. 

2. This numbering is defined for every sub-chain, 
recursively. 

For example, there are two possibilities for numbering the 
fundamental Assur Graph in Figure 9a as shown in 9b and 
9c.  The corresponding number for the framework in 
Figure 9b is 1231456 and for the second framework is 
1234156. Since 1231456 >1234156 in lexicographic order, 
thus the numbering in Fig. b will be the one chosen.  
 
 

 
 

Figure  9.  Example of different numbering of 
fundamental Assur Graphs. 
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 Table 1 - Some classes of Assur graphs in 2D 
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An additional example is shown in Figure  10, with the 
fundamental Assur Graph associated with the unique 
numbering of: 1231451617189(10). 

 
 

Figure  10. Example for a fundamental Assur 
Graphs, whose unique numbering is  

1231451617189 10). 
 

 
5.   THE MATHEMATICAL FOUNDATION 
UNDERLYING THE PROOF OF THE 
COMPLETENESS AND SOUNDNESS OF THE 2D 
ASSUR GRAPH TABLE 
In this section we show that the map of all the Assur 
Graphs in 2D is complete and sound, i.e,. all the Assur 
Graphs  can be derived through the above two operations 
and all the graphs that are derived by applying the two 
operations are Assur Graphs. The mathematical 
foundation underlying this proof is based on two works 
reported in the rigidity theory literature.  
The first work was published in 2003 (Berg  and Jordan, 
2003)  who proved  that there exists an infinite set of 
graphs with e=2v-2 possessing one self-stress on all the 
edges, i.e. internal forces on all the edges that satisfy the 
force equilibrium around each vertex. The type of their 
graphs is slightly different from Assur Graphs since they 
do not have ground vertices. Graphs that relate to trusses 
but do not have ground vertices are termed – frameworks, 
but still the main concern is rigidity of the frameworks. 
Thus, in this new terminology they defined frameworks 
with e=2v-2 that possess a unique self-stress on all the 
edges. They called these types of frameworks with the 
above property related to self-stress as -  generic cycles. In 
Figure  11 are shown two frameworks with the same 
number of edges and vertices but only the one appearing 
in Figure 11b is a generic cycle since it possesses a  
unique self-stress while the framework in Figure 11a does 
not.  
 
 
 

 
Figure  11.  Example of two frameworks. 
a) Not a generic cycle. b) Generic cycle 

 
In their work, Berg and Jordan proved that it is possible to 
derive all the generic cycles from only one framework, a 
framework with four vertices,  six edges  and complete, 
i.e., there is an edge between any two vertices. The latter 
graph is  designated in the literature – as  K4 and is shown 
in Figure 12a. They have used two operations: the 1-
extension and the 2-sum. The first operation is used in the 
current paper as well, while the latter is similar to the 
logical exclusive OR -  XOR operation: you join two 
generic cycles by deleting a common edge and the 
remaining edges constitute the result of the 2-sum as 
shown in Figure 12b. 
 

 
Figure 12.  The  2-sum of two frameworks of type 

K4. 
a) The two frameworks K4. b) The resulting 

framework. 
 

The second work that the proof is based on is (Servatius et 
al., 2009a,b) which established the relation between Assur 
Graphs and generic cycles. In the latter paper it was 
proved that every Assur Graph corresponds to a generic 
cycle by contracting all of its ground vertices into one 
vertex. This latter graph is termed a contracted Assur 
Graph. In Figure 13a  appears a triad, for which  
contracting its three ground vertices results in the known 
complete graph, K4. 
 

 
Figure  13.  Transforming an Assur Graph into a 

generic cycle (contracted Assur Graph). 
a) The triad. b) The corresponding contracted Assur 

Graph – K4. 
It can be easily verified that all the Assur Graphs 
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appearing in table 1 can be reformulated in the 
terminology of generic cycles. Thus, since for the latter it 
was proved that the two operations guarantee 
completeness and soundness thus it is valid also for all 
Assur Graphs. 
 
In the next section we introduce the extension of this 
canonical form into 3D. In contrary to 2D, it is, yet, 
impossible to prove the completeness conjecture, i.e., 
there are still Assur Graphs in 3D that cannot be derived 
from the fundamental Assur Graphs.  

6.   THE CANONICAL FORM OF THE ASSUR  
GRAPHS IN 3D 
The transformation from Assur Graphs in 2D into 3D, is 
straightforward. We start again with the dyad, this time 
consisting of three ground edges instead of two, as shown 
in Fig. 12a. In the fundamental extension we replace each 
ground edge with a triangle, but this time two edges come 
out from each of the two new vertices, as shown in Fig. 
14b where a 3D triad was constructed through a 
fundamental extension from the 3D dyad. 

 
Figure  14.  Example of a fundamental extension in 

3D. 
a) The 3D dyad. b) The 3D triad. 

 
The idea of the classes, and that each fundamental Assur 
Graph is the representative of a class of Assur Graphs is 
the same as in 2D, only this time the operation 
transforming one Assur Graph into the successor is done 
through 2-extension. In the 2-extension the vertex that is 
added is connected this time to two other vertices and not 
to one as is done in the 1-extension. Example of deriving 
an Assur Graph from fundamental Assur Graphs appears 
in Figure 15 where the edge being split is indicated by the 
bold edge. 
 

 

 
Figure  15.  Example of applying the 2-extesnion in a 

3D Assur Graph. 
a) The fundamental Assur Graphs spatial triad. b) 

The resulting Assur Graph after applying the 2-
extension. 

 
The structure of the canonical form is the same as for the 
2D Assur Graph. The first column consists of the spatial 
dyad, which does not have a correspondence in the 3D 
Assur Graph, thus there are no derivations in that column. 
The first row consists of the fundamental Assur Graphs, 
and each column contains all the derivations from that 
representative using 2-extension operation. 

6.1  THE MATHEMATICAL PROOF UNDERLYING  
THE 3D ASSUR GRAPH 
 
In contrast to 2D, there is no mathematical proof for the 
completeness of the 3D Assur Graphs. The main reason 
for that is that there are still mathematical problems that 
have not yet been resolved by the mathematicians in the 
rigidity theory community. Among these is the Assur 
Graph, appearing in Figure 16,  for which there is no 
derivation from any fundamental Assur Graphs. The main 
problem is that the degree of each vertex is at least five.  
 

 
 
Figure  16.   Example of a 3D Assur Graph for which 

there is no derivation from any fundamental Assur 
Graphs. 

 
7. CONCLUSIONS AND FURTHER RESEARCH  
The paper shows that there is a nice order in building all 
the topologies of planar linkages. All starts from the most 
basic topology - the dyad. Then through only two 
operations all the Assur Graphs are produced. Moreover, 
all Assur Graphs are arranged in a very nice order. There 
is infinite number of fundamental Assur Graphs derived 
by applying a sequence of fundamental extensions upon 
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the dyad. If we arrange all the Assur Graphs in a table, 
each fundamental extension creates another column in this 
table. Now that we have infinite number of columns of the 
table, from each fundamental Assur Graph there is an 
infinite number of Assur Graphs derived by applying the 
1-extension operation several times. In short, all the Assur 
Graphs are arranged in a table with infinite columns and 
infinite rows and each Assur graph in the table has a 
specific sequence of applying the mentioned two 
operations. It should be noted that it was proven in the 
references quoted that the two operations preserve the 
combinatorial properties of Assur Graphs. 
Once we have all the Assur Graphs, when we connect 
several Assur graphs by connecting ground joints of one 
graph into inner joints of the other and adding driving 
links we obtain the topology of all the linkages. 
In 2D it is mathematically proved that all the Assur 
Graphs appear in the above table. This is not the case in 
3D. There are still Assur Graphs that cannot be derived 
from the spatial dyad. Once a mathematical variant of 2-
extension will be revealed in the rigidity theory 
community we will have all the topologies of all linkages 
in 3D. 
The mathematical basis of the validity of the presented 

technique has been omitted from this paper, as it has been 
widely elaborated in previous publications of the author in 
collaboration with the discrete mathematical community.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table  2. The table of 3D Assur Graphs 
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Class 5 Class 4 Class 3 Class 2 Class 1 
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